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Abstract
The multipole moments of a homogeneously polarized ellipsoid and a
homogeneously charged ellipsoidal disc are calculated. The resulting
hypergeometric functions are expressed as finite polynomials of the semi-axes
a, b and c of the ellipsoid. The polynomial form exists for any order of the
multipole moments. It is shown that the solution also applies to a two-domain
ellipsoid with antiparallel polarized domains and to a system with radially
changing polarization density. The results allow us to calculate the potential as
well as interaction energies within the framework of multipole expansion.

PACS numbers: 02.30.Em, 02.30.Mv, 41.20.Gz, 75.75.+a

1. Introduction

Expanding a Coulomb-like potential in terms of multipole moments is a classical tool of
potential theory [1, 2]. The main purpose of a multipole expansion is the approximation of
the potential outside a finite ‘charged’ body, which then can be used to calculate the stray
field or the interaction energy with a second body exposed to this field. The approximation
has, due to the scale invariance, a wide range of applications. On a very large scale, it can
be utilized to describe the gravitational potential of galaxies [3, 4] and many body kinematics
[5]. A typical example is the expansion of the Coulomb potential of charged particles as e.g.
dielectric ellipsoids [6]. On the nanoscale, multipole expansion enables the fast calculation of
interaction energies of magnetic particles with non-spherical geometry [7]. Even on the atomic
scale it is utilized to calculate the interaction between atoms and molecules [8]. In contrast
to the aforementioned direct tasks applications to inverse problems, i.e. the determination of
internal effective properties of a system from its external potential, as well as a mathematical
introduction to potential theory and multipole expansion are given in [9].

The evaluation of the interaction energy within the framework of the multipole expansion
has several advantages: the calculation of the moments requires only 3-fold (2-fold) integrals
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while the exact integration of volume charge (surface charge) needs 6-fold (4-fold) integrals.
The interaction is then handled via an interaction tensor, which does not change complexity—
at least not in spherical coordinates [8, 10]—with increasing order of expansion. Furthermore,
if the interacting particles change their relative orientation it is only necessary to rotate the
moments in terms of Wigner-D-functions [11], while apart from a few trivial cases the exact
integral has to be evaluated again, including a geometry specific coordinate transformation of
the integration variables.

The calculations of multipole moments for simple and symmetric geometries are exercises
of textbooks [12, 13], but only a few complex structures with analytical expressions are known.
To calculate the potential of a polarized ellipsoid it is not necessary to utilize the multipole
expansion. However, the solutions are complicated and for a �= b �= c even require elliptic
integrals [14]. Therefore, the exact calculation of the interaction energy via a 6-fold (4-fold)
integral becomes a non-trivial task. Knowledge of the multipole moments would allow us
to calculate easily the energies within one-, two- and three-dimensional systems of polarized
elliptic particles under the influence of an external field. As ferromagnetic or ferroelectric
particles are typically fixed in position the external field forces the polarization to change its
orientation with respect to the particle geometry. Therefore, it changes the multipole moments
and analytical expressions for the moments would be a very helpful and practical tool when
calculating the interaction energy in such many particle systems.

In this study, analytical solutions for polarized general ellipsoids with semi-axes
(a, b, c) and arbitrary polarization direction are derived. The polarization is assumed to
be homogeneous, leaving uncompensated charges at the surface. In detail, the polarization
has only to be homogeneous in one half of an ellipsoid, i.e. there may be two domains (figure 1)
each homogeneously polarized. The resulting domain wall is symmetric in the (x, y)-plane1.
To ensure a well-defined multipole expansion, it is required that the centre of charge and the
origin coincide; obviously, this requirement is fulfilled by parallel or antiparallel polarization
of the two halves2. The case of antiparallel domains is e.g. an approximation of spin domains in
Bose–Einstein condensates, where the spin of the condensate is in general free to rotate and able
to form domains in an external magnetic field [15]. In the case of parallel polarization of the
two halves the moments just describe homogeneously polarized or magnetized nanoparticles
[16–18].

The strategy to gain the multipole moments is as follows: first one has to integrate over
the charge density, weighted by normalized spherical harmonic functions (section 2). The
integration will be carried out in spherical coordinates. This requires us to express the charge
density as well as the surface area element within this coordinate system. As a consequence
the two integrals, over the polar and the azimuthal angles, couple in a non-trivial way
(section 2.1). The coupling only vanishes in the case of a spheroid (section 2.1.3). It
will be shown that the integration over the polar angle can be expressed in terms of Gaussian
hypergeometric functions [19], where the arguments depend on the order of the multipolar
expansion and on the azimuthal angle (section 2.1.1). These integrals have similarities with
those emerging from calculating the demagnetizing tensor of an ellipsoid [1, 20, 21]. Indeed,
it is possible to express the demagnetizing factors of a spheroid in terms of hypergeometric
functions [22].

In the next step, it is shown that the azimuthal integration over each addend is of the
same type as the polar integration (section 2.1.2). Consequently, each addend results in a
hypergeometric function, which also can be expanded in finite polynomes. Accordingly,

1 The (y, z)- and the (z, x)-plane can be realized by changing a, b and c plus a rotation of the system.
2 Several other possibilities fulfulling the above condition exist, but in the case of arbitrary directions of polarization,
centre of charge and origin do not coincide in general.
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Figure 1. Two-dimensional sketch of two possible geometries, where centre of charge and origin
coincide. In (a) the upper and lower domains are polarized in parallel resulting in a single domain
with polarization �P ; in (b) the polarization �P1 of domain 1 (z > 0) is antiparallel to �P2 of domain
2 (z < 0). Consequently, there is a negatively charged domain wall, the thick black line at z = 0.
The circumferences of the ellipsoids are coloured with respect to the surface charge density σ (c),
where the maximum surface charge density is σ0 = κ ‖ �P ‖ and κ either ε0 or µ0 (see the text for
details).

(This figure is in colour only in the electronic version)

it is proved rigorously that, in contrast to the results of the demagnetizing factors, the
hypergeometric functions emerging from integrating the multipole moments can be expressed
as finite polynomials of a, b and c up to any order of the expansion.

With this scheme the multipole moments of polarized ellipsoids can be calculated easily
by the sums of (15), (16) and (22). In the future, the results of the present investigation will
be used for simulation of magnetic nanoparticles in arrays of arbitrary symmetry.

2. Integrating the charge density of a half ellipsoid (one domain)

Homogeneously polarized matter with polarization vector �P in a volume V creates a surface
charge σ ∝ �n · �P on the surface S of a finite body (see figure 1), where �n = �S/S is the surface
normal. The integration of the multipole moments follows the definition given in [23]. In
general the moments have the form

Qlm = κ

∫
S

Rlm(�S) �P · d�S, (1)

where R is the regular normalized spherical harmonic function and κ is either ε0 or µ0,
depending on whether the polarization is electric or magnetic. In the following the integrals
are solved for one half—one domain—of the ellipsoids (figure 1(b)).

2.1. The half shell of an ellipsoid

The integrals over a half shell are not multipole moments in the common sense as the centre
of charge and the origin of the coordinate system do not coincide; to emphasize this, these
‘half moments’ will be marked by a tilde. Giving the polarization in spherical coordinates as
�P = (P0, θp, φp) and introducing σ0 = κP0 the half moments read

Q̃lm = σ0

√
(l − m)!

(l + m)!

∫ π
2

0
dθ

∫ 2π

0
dφ P m

l (cos θ) eimφ sin θ

×
( cos φ cos φp

a2 + sin φ sin φp

b2

)
sin θ sin θp + 1

c2 cos θ cos θp[( cos2 φ

a2 + sin2 φ

b2

)
sin2 θ + 1

c2 cos2 θ
] l+4

2

, (2)
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where the surface element of the general ellipsoid is expressed in spherical coordinates and
P m

l are the associated Legendre polynomials [19]. The numerator in (2) can be split into the
sum of three terms q1 + q2 + q3, which hold the proportionalities

q1 ∝ P m
l (cos θ) eimφ cos θ sin θ

q2 ∝ P m
l (cos θ) eimφ cos φ sin2 θ

q3 ∝ P m
l (cos θ) eimφ sin φ sin2 θ.

(3)

The exponential function can be expressed in terms of sine and cosine functions, exp(imφ) =
cos mφ + i sin mφ. Due to the symmetries of the trigonometric functions and the denominator
the integration over sin mφ of q1 vanishes for all integer m. The integration over cos mφ

vanishes for all odd m. The terms q2 and q3, which contain additional trigonometric functions
of φ, can be simplified further to four sums proportional to Gi(m, φ), i ∈ {1, . . . , 4} (see
(A.1) in the appendix). In G2 and G3 only sine functions appear and the integral vanishes due
to symmetry. In the case of G1 and G4 terms of cos(m ± 1)φ are nonzero only if m is odd.
Consequently, two types of integrals must be evaluated,

q1 ∝
∫ 2π

0
dφ

cos mφ

c2
( cos2 φ

a2 + sin2 φ

b2

) l+4
2

∫ π
2

0
dθ

P m
l (cos θ) cos θ sin θ

(1 − ε(φ) cos2 θ)
l+4
2

(4)

q2,3 ∝
∫ 2π

0
dφ

cos(m ± 1)φ

2
( cos2 φ

a2 + sin2 φ

b2

) l+4
2

∫ π
2

0
dθ

P m
l (cos θ) sin2 θ

(1 − ε(φ) cos2 θ)
l+4
2

, (5)

for even and odd m, respectively. To simplify matters ε(φ) with

ε(φ) = 1 − 1

c2
( cos φ

a2 + sin φ

b2

) (6)

has been introduced.

2.1.1. Integrating over the polar angle. To integrate over θ a substitution of cos θ by x is
performed transforming the proportionality from above into

q1 ∝
∫ 1

0
dx

P m
l (x)x

(1 − ε(φ)x2)
l+4
2

q2,3 ∝
∫ 1

0
dx

P m
l (x)

√
1 − x2

(1 − ε(φ)x2)
l+4
2

. (7)

The associated Legendre polynomials P m
l (x) consist of a product of a polynomial of order

l −|m| and (1 − x2)
|m|
2 , see (B.2). Hence, the integral over x can be separated into the addends

of order n of this polynomial, resulting in

qi ∝
l−|m|∑
n=0

∫ 1

0
dx

pn(l,m)xn−τ+1(1 − x2)
|m|+τ

2

(1 − ε(φ)x2)
l+4
2

, (8)

where τ = 0 if m is even (q1) and τ = 1 if m is odd (q2,3). Now substituting x2 by t for each
order n one gets the integral

qi ∝ In,τ (l, m) = 1

2

∫ 1

0
dt

t
n−τ

2 (1 − t)
|m|+τ

2

(1 − ε(φ)t)
l+4
2

(9)
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which is an integral representation of the hypergeometric function (see appendix C). An
additional linear transformation (see (C.2)) eventually gives

In,τ (l, m) = 1

2

	
(

n−τ+2
2

)
	

( |m|+τ+2
2

)
	

( |m|+n+4
2

)
(1 − ε(φ))

l−|m|−τ+2
2

× 2F1

(
− l − |m| − n

2
,
|m| + τ + 2

2
; |m| + n + 4

2
; ε(φ)

)
(10)

for even m, τ = 0, and for odd m, τ = 1.
The boundary of n ensures that (l − |m| − n) is a non-negative integer; due to the fact

that every second pn(l,m) is zero it is also known that (l − |m| − n) is even. Therefore,
(l −|m|−2)/2 is a non-negative integer, which allows us to write the hypergeometric function
in a polynomial form (see (C.3)). Inserting the results of (10) in (2) the integration over θ

results in a polynomial

Q̃l,m = σ0

√
(l − m)!

(l + m)!
cos θp

l−|m|∑
n=0

pn(l,m)

2

	
(

n+2
2

) (
m
2

)
!

	
( |m|+n+4

2

) cl−|m|

×
l−|m|−n

2∑
j=0

(− l−|m|−n

2

)
j

( |m|+2
2

)
j

j !
( |m|+n+4

2

)
j

∫ 2π

0
dφ

cos mφεj (φ)( cos2 φ

a2 + sin2 φ

b2

) |m|+2
2

(11)

for even m3 and

Q̃l,m = σ0

√
(l − m)!

(l + m)!
sin θp

l−|m|∑
n=0

pn(l,m)

2

	
(

n+1
2

)( |m|+1
2

)
!

	
( |m|+n+4

2

) cl−|m|+1

×
l−|m|−n

2∑
j=0

(− l−|m|−n

2

)
j( |m|+n+4

2

)
j

( |m|+3
2

)
j

j !

∫ 2π

0
dφεj (φ)

×
( cos φp

a2 + i sin φp

b2

)
cos(1 − m)φ +

( cos φp

a2 − i sin φp

b2

)
cos(1 + m)φ

2
( cos2 φ

a2 + sin2 φ

b2

) |m|+3
2

(12)

for odd m, while the more complicated integration over φ remains.

2.1.2. Integrating over the azimuthal angle. In the next step the technique already applied
for the integration over θ will be applied to φ. To do so cos mφ and cos(m±1)φ are expressed
as polynomials of cos φ (appendix A). The expansions of the cosine and of the factor εj (φ)

each give an additional sum. Therefore, by introducing η = 1 − (b/a)2 and the binomial
coefficient

(
j

κ

)
, it is possible to express the remaining integrals over φ in the form

∫ 2π

0
dφ

cos φp

a2 ± i sin φp

b2

2

m∓1
2∑

k=0

j∑
κ=0

(−1)κ
(

j

κ

)
αk(|m ∓ 1|)(cos2 φ)k

(1 − η cos2 φ)κ+ |m|+3
2

, (13)

3 It is worth noting that for even m the integrand xP m
l (x) may also be expressed as a polynomial of order l + 1.

This leads to a different expression of En with different pn(l, m). Expressing the integrand in this way simplifies the
solution in the case of m = 0 and odd l, which is interesting in the case of a monodomain spheroid, polarized along
the axis of symmetry.
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for odd m and in a similar way for even m. Due to symmetry the integral can be restricted
to the interval [0, π/2]. By substituting cos2 φ by t the integral can be transformed into a
representation of the hypergeometric function

4
∫ π

2

0
dφ

(cos2 φ)k

(1 − η cos2 φ)κ+ |m|+3
2

= 2
∫ 1

0
dt

t k− 1
2

√
1 − t (1 − ηt)κ+ |m|+3

2

, (14)

which again can be expressed as a finite polynomial. With minor simplifications the final
result for even m is

Q̃lm = σ0

√
(l − m)!

(l + m)!

√
π cos θp

l−|m|∑
n=0

pn(l,m)
	

(
n+2

2

) ( |m|
2

)
!

	
(

n+|m|+4
2

)

×
l−|m|−n

2∑
j=0

(− l−|m|−n

2

)
j

( |m|+2
2

)
j

j !
( |m|+n+4

2

)
j

|m|
2∑

k=0

αk(|m|)
j∑

κ=0

(−1)κ
(

j

κ

)
	

(
k + 1

2

)
k!

×
|m|
2 +κ−k∑
u=0

(
k − κ − |m|

2

)
u

(
1
2

)
u

u!(k + 1)u

u∑
v=0

(−1)v
(

u

v

)
a|m|+2κ−2v+1b2v+1cl−|m|−2κ , (15)

where two additional sums, over u and v, appear. The first sum is due to the expansion of
the hypergeometric function, while the latter results from the expansion of ηu, the expansion
parameter of the hypergeometric function. For odd m the polynomial has the form

Q̃lm = σ0

√
(l − m)!

(l + m)!

√
π

2
sin θp

l−|m|∑
n=0

pn(l,m)
	

(
n+1

2

) ( |m|+1
2

)
!

	
( |m|+n+4

2

)

×
l−|m|−n

2∑
j=0

(− l−|m|−n

2

)
j

( |m|+3
2

)
j

j !
( |m|+n+4

2

)
j

j∑
κ=0

(−1)κ
(

j

κ

)

×
{(

cos φp

a2
+ i

sin φp

b2

) |m−1|
2∑

k=0

αk(|m − 1|)	
(
k + 1

2

)
k!

|m|+1
2 +κ−k∑
u=0

(
1
2

)
u

u!

×
(
k − κ − |m|+1

2

)
u

(k + 1)u

u∑
v=0

(−1)v
(

u

v

)
a|m|+2κ−2v+2b2v+1cl−|m|−2κ+1

+

(
cos φp

a2
− i

sin φp

b2

) |m+1|
2∑

k=0

αk(|m + 1|)	
(
k + 1

2

)
k!

|m|+1
2 +κ−k∑
u=0

(
1
2

)
u

u!

×
(
k − κ − |m|+1

2

)
u

(k + 1)u

u∑
v=0

(−1)v
(

u

v

)
a|m|+2κ−2v+2b2v+1cl−|m|−2κ+1

}
. (16)

Hence, the two sums over k are almost identical; they can be combined leaving only the last
addend from the second sum, where further simplification is possible as e.g. αm+1

2
(m+1) = 2m.

The lower order multipole moments calculated with (15) and (16) are listed in table 1.

2.1.3. Simplifications in the case of a spheroid. In the case of a spheroid, i.e. a = b, the
rather complicated denominator of (2) becomes independent of φ. The remaining dependence
in the numerator easily shows that the integral in (11) is nonzero only for m = 0 while (12) is
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Table 1. Moments of a half shell of general ellipsoids with semi-axes a, b and c in x-, y- and
z-direction, respectively, in units of the surface charge density σ0 up to the order l = 4 calculated
with (15) and (16). Remember that these are not multipole moments as the integration is not
performed with respect to the centre of charge. Combining two shells (see the text) gives the
true multipole moments. In the case of a two-domain ellipsoid also the moments of the domain
wall have to be added. Solutions for negative m are easily obtained by the well-known relation
Ql−m = (−1)mQ∗

lm.

l m Q̃lmσ−1
0

0 0 πab cos θp

1 0 2π
3 abc cos θp

1 −
√

2π
3 abc eiφp sin θp

2 0 − π
8 ab(a2 + b2 − 4c2) cos θp

1 −
√

3
32 πabc2 eiφp sin θp

2
√

3
128 πab(a2 − b2) cos θp

3 0 − π
5 abc(a2 + b2 − 2c2) cos θp

1 π

10
√

3
abc(cos φp(3a2 + b2 − 4c2) + i sin φp(a

2 + 3b2 − 4c2)) sin θp

2 π√
30

abc(a2 − b2) cos θp

3 − π√
20

abc(a2 − b2) eiφp sin θp

4 0 π
192 ab(9a4 + 6a2(b2 − 8c2) + (3b2 − 8c2)2) cos θp

1
√

5π
96 abc2(cos φp(9a2 + 3b2 − 8c2) + i sin φp(3a2 + 9b2 − 8c2)) sin θp

2 −
√

5
2

π
32 ab(a2 − b2)(a2 + b2 − 4c2) cos θp

3 −
√

35π
32 abc2(a2 − b2) eiφp sin θp

4
√

35
2

π
64 ab(a2 − b2)2 cos θp

nonzero only if |m| = 1. The half moments then are

Q̃l0 = σ0π cos θp

l∑
n

pn(l, 0)	

(
n + 2

2

)

×
l−n

2∑
j=0

(− l−n
2

)
j

	
(

n+4
2 + j

) j∑
v=0

(−1)v
(

j

v

)
a2v+2cl−2v (17)

and

Q̃l±1 = σ0

√
(l ∓ 1)!

(l ± 1)!

π

2
sin θp e±iφp

l−1∑
n

pn(l,±1)	

(
n + 1

2

)

×
l−n−1

2∑
j=0

(j + 1)
(− l−n−1

2

)
j

	
(

n+5
2 + j

) j∑
v=0

(−1)v
(

j

v

)
a2v+2cl−2v, (18)

respectively.

2.2. The multipole moments of an ellipsoidal disc, the domain wall

If an ellipsoid possesses two domains, with a geometry described before, it also exhibits a
disc-shaped charged domain wall. Due to homogeneously polarized domains, the disc has a
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Table 2. Moments of an ellipsoidal disc with semi-axes a and b in x- and y-direction, respectively,
in units of the surface charge density σdisc up to the order l = 4 calculated with (22). Only even l
and m are allowed.

l m Q
disc,ell
lm σ−1

disc

0 0 abπ

2 0 − π
8 ab(a2 + b2)

2
√

3
128 πab(a2 − b2)

4 0 π
64 (3a5b + 2a3b3 + 3ab5)

2 −
√

5
2

π
32 ab(a4 − b4)

4
√

35
2

π
64 ab(a2 − b2)2

homogeneous charge density. The given geometry automatically ensures that centre of charge
and origin coincide and the integration over the surface directly gives the multipole moments
of the disc. Defining polar coordinates as

�r(r, φ) = r√
cos2 φ

a2 + sin2 φ

b2

(
cos φ

sin φ

)
, (19)

where r ∈ [0, 1] and introducing the charge density of the disc, σdisc = −σ0 cos θp, the
multipole moments have the integral form

Q
disc,ell
lm = σdisc

√
(l − m)!

(l + m)!

∫ 2π

0
dφ

∫ 1

0
dr

P m
l (0)rl+1( cos2 φ

a2 + sin2 φ

b2

) l+2
2

eimφ. (20)

For symmetry reasons it is obvious that m has to be even and as [19]

P m
l (0) = 2m

	
(

l+m+1
2

)
	

(
l−m+2

2

) cos
π(l + m)

2
, (21)

it follows that also l must be even. Applying the same methods as before the moments
eventually read

Q
disc,ell
lm = 2

√
πσdisc

√
(l − m)!

(l + m)!

P m
l (0)

l + 2

m
2∑

k=0

αk(m)
	

(
k + 1

2

)
k!

l
2 −k∑
j=0

(
k − l

2

)
j

(
1
2

)
j

j ! (k + 1)j

×
j∑

v=0

(−1)v
(

j

v

)
al−2v+1b2v+1. (22)

The lower order multipole moments of charged discs are listed in table 2. In the case of a = b

(22) simplifies to

Qdisc
l0 = (−1)

m
2 2πσdisc

P 0
l (0)

l + 2
al+2. (23)

Hence, due to symmetry m has to be zero if a = b.

3. The multipole moments of the general ellipsoid

In the previous chapters the integrals over a half shell of an ellipsoid as well as a disc have been
evaluated. As mentioned before, when combining two shells it is required that centre of charge
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and origin coincide. Combining the shells the parity of the integrand has to be considered.
If the two shells have parallel polarization the parity of the charge distribution is negative
and consequently the integral vanishes if the (regular normalized ) spherical harmonics have
positive parity. From this it follows that l has to be odd. Therefore, the multipole moments
of a homogeneous polarized ellipsoid are twice the values given in table 1 if l is odd and
zero otherwise. If, on the other hand, the two shells have antiparallel polarization the charge
distribution has even parity and the normalized spherical harmonics must have the same
symmetry. Hence, l must be even and the multipole moments are twice the results of table 1
plus—as both shells contribute to a domain wall—twice the result of table 2 if l is even and
zero otherwise.

4. Summary and discussion

It has been shown that the multipole moments for ellipsoidal discs as well as general ellipsoids
with homogenous polarization of arbitrary direction can be expressed as finite polynomials
of the semi-axes (a, b, c). The results are valid for any order l of a multipole expansion. As
the integrals for the ellipsoid are solved only for a half shell it is also possible to combine the
results for a single domain as well as a two-domain ellipsoid with antiparallel polarization.
Several other special cases of orientations of the polarization are possible, for instance in a
spheroid where the angles φp can be chosen arbitrarily for each shell if θp = π/2.

One could argue that the restriction to a surface charge is an oversimplification. If e.g. the
polarization density changes in space, a ‘volume charge’ emerges. The results given above
easily can be extended to systems with a polarization density n changing with n ∝ f (t) and
t2 = a−2x2 + b−2y2 + c−2z2, i.e. the density is constant on an ellipsoid. If the direction of the
polarization is constant and f (t) is continuously differentiable all given results still hold as
the required volume integral—after integrating over t—only differs from the surface integral
(2) by a prefactor (see appendix D).

Therefore, the results are not only applicable to homogeneous polarization but also to
systems where the polarization direction is constant but varies in intensity described by a
function f with the aforementioned properties.
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Appendix A. Relations for trigonometric functions

The products of trigonometric functions, which appear in (3) are simplified to

G1(m, φ) = cos(mφ) cos φ = 1

2
(cos((1 − m)φ) + cos((1 + m)φ)

G2(m, φ) = i sin(mφ) cos φ = i

2
(− sin((1 − m)φ) + sin((1 + m)φ)

G3(m, φ) = cos(mφ) sin φ = 1

2
(sin((1 − m)φ) + sin((1 + m)φ)

G4(m, φ) = i sin(mφ) sin φ = i

2
(cos((1 − m)φ) − cos((1 + m)φ).

(A.1)
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The function cos mφ, with m even, can be expressed as an even polynomial of cos φ of
order m,

cos mφ =
|m|
2∑

k=0

αk(|m|) cos2k φ, (A.2)

where the coefficients αk(m) are given by

αk(m) = (−1)
m
2 −k m

2

22k	
(
k + m

2

)
	(2k + 1) 	

(
m
2 − k + 1

) , (A.3)

and α0(0) = 1.

Appendix B. Coefficients of the associated Legendre functions

The associated Legendre functions can be expressed as [24]

P m
l (x) =

√
1 − x2

m
	 l−m

2 
∑
k=0

(−1)k+m

2l

(2l − 2k)!

k!(l − k)!(l − m − 2k)!
xl−m−2k, (B.1)

where the floor function—denoted by the brackets—ensures that the upper limit of the sum is
an integer value. Rearranging the sum the polynomial reads

P m
l (x) =

√
1 − x2

m

l−m−τ
2∑

k=0

(−1)l+m−τ+2k

2l

(l + m + τ + 2k)!x2k+τ(
l−m−τ

2 − k
)
!
(

l+m+τ
2 + k

)
!(2k + τ)!

=
√

1 − x2
m

l−m∑
n=0

pn(l,m)xn, (B.2)

where τ = 0 if l + m is even and τ = 1 if l + m is odd. Eventually the coefficients for m � 0
have the form

pn(l,m) = 1 + (−1)l+m−n

2
· (−1)

l+m−n
2

2l
· (l + m + n)!(

l−m−n
2

)
!
(

l+m+n
2

)
!n!

pn(l,−m) = (−1)m
(l − m)!

(l + m)!
pn(l,m),

(B.3)

where the first quotient is either zero or one and therefore ensures that the polynomial is either
even or odd.

Appendix C. The hypergeometric function 2F1

The properties of the hypergeometric function are given in [19]. The integral representation
has the form

	(b)	(c − b)

	(c)
2F1(a, b; c; z) =

∫ 1

0
dt tb−1(1 − t)c−b−1(1 − zt)−a. (C.1)

Furthermore, the transformation

2F1(a, b; c; z) = (1 − z)c−a−b
2F1(c − a, c − b; c; z) (C.2)

is applied several times in the text. The function is symmetric with respect to a and b. In the
case of a ∈ N0 the hypergeometric function has a polynomial form

2F1(−a, b; c; z) =
a∑

j=0

(−a)j (b)j

(c)j

zj

	(j + 1)
, (C.3)
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utilizing for x > 0

(x)j = 	(x + j)

	(x)
(−x)j = (−1)j

	(1 + x)

	(1 + x − j)
(x � j). (C.4)

All formulae required before have j = 0 if x = 0; in this case (x)0 exists in the limit x → 0
and is (0)0 = 1.

Appendix D. Integration over volume charge

Assuming that the polarization density changes by a function f but has constant direction
�p = �P/P0 the volume charge is

ρ(�r) = −σ0 �p · �∇f (t (x, y, z)). (D.1)

If the function f (t) is of the form

f (t (x, y, z)) = f

(√
x2

a2
+

y2

b2
+

z2

c2

)
(D.2)

the polarization density is constant on an ellipsoidal shell. The volume charge is given by

ρ(�r) = −σ0

⎛
⎝sin θp cos φp

sin θp sin φp

cos θp

⎞
⎠ ·

⎛
⎜⎜⎝

d
dx

f (t (x, y, z))

d
dy

f (t (x, y, z))

d
dz

f (t (x, y, z))

⎞
⎟⎟⎠

= −σ0

⎛
⎝sin θp cos φp

sin θp sin φp

cos θp

⎞
⎠ ·

⎛
⎜⎝

x
a2

y

b2

z
c2

⎞
⎟⎠ 1

t

∂

∂t
f (t)

= −σ0r

⎛
⎝sin θp cos φp

sin θp sin φp

cos θp

⎞
⎠ ·

⎛
⎜⎝

sin θ cos φ

a2

sin θ sin φ

b2

cos θ
c2

⎞
⎟⎠ 1

t

∂

∂t
f (t)

= −σ0t

( cos φ cos φp

a2 + sin φ sin φp

b2

)
sin θ sin θp + 1

c2 cos θ cos θp√( cos2 φ

a2 + sin2 φ

b2

)
sin2 θ + 1

c2 cos2 θ

1

t

∂

∂t
f (t). (D.3)

As the volume element has the form

dV = t2 sin θ(( cos2 φ

a2 + sin2 φ

b2

)
sin2 θ + 1

c2 cos2 θ
) 3

2

dt dθ dφ (D.4)

the integral over one half of an ellipsoid reads

Q̃vol
lm = −σ0

√
(l − m)!

(l + m)!

∫ 2π

0
dφ

∫ π
2

0
dθ

∫ 1

0
dtP m

l (cos θ) eimφ sin θ

×
( cos φ cos φp

a2 + sin φ sin φp

b2

)
sin θ sin θp + 1

c2 cos θ cos θp[( cos2 φ

a2 + sin2 φ

b2

)
sin2 θ + 1

c2 cos2 θ
] 4

2

t2rl(t, θ, φ)
∂

∂t
f (t)

=
(

−
∫ 1

0
dt t l+2 ∂

∂t
f (t)

)
σ0

√
(l − m)!

(l + m)!

∫ 2π

0
dφ

∫ π
2

0
dθ P m

l (cos θ) eimφ sin θ



14802 M Schult et al

×
( cos φ cos φp

a2 + sin φ sin φp

b2

)
sin θ sin θp + 1

c2 cos θ cos θp[( cos2 φ

a2 + sin2 φ

b2

)
sin2 θ + 1

c2 cos2 θ
] l+4

2

=
(

−
∫ 1

0
dt t l+2 ∂

∂t
f (t)

)
Q̃lm, (D.5)

where Q̃lm is given in (2). By means of distributions this result even contains the surface
integral in the case of a constant polarization density that has a discontinuity at the surface.
Differentiating f (t) = H(1 − t)—the Heaviside step function—would lead to the Dirac delta
f ′(t) = −δ(1 − t). Consequently, the result of the integral over t is 1l+2 = 1 and eventually
the solution for the volume integral is identical with the surface integral (2).

In an easy and similar way one shows that for the charged disc the angle-dependent
integrals stay the same as well; only the prefactor (l + 2)−1 in (22) and (23) has to be replaced
by an integral over t l+1f (t).

References

[1] Maxwell J C 1892 A Treatise on Electricity and Magnetism 3rd edn (Oxford: Oxford University Press)
[2] Kellogg Oliver Dimon 1953 Foundations of Potential Theory (New York: Dover)
[3] Janis A I and Newman E T 1965 Structure of gravitational sources J. Math. Phys. 6 902
[4] Brada R and Milgrom M 1995 Finite disks with power-law potentials Astrophys. J. 444 71
[5] Wachlin F C and Carpintero D D 2006 Softened potentials and the multipolar expansion Rev. Mex. Astron.

Astrofis. 42 251
[6] Muratov R Z 1992 Field of a nonuniformly charged inhomogeneous dielectric ellipsoid Zh. Thek. Fiz. 61 15
[7] Vedmedenko E Y, Mikuszeit N, Oepen H P and Wiesendanger R 2005 Multipolar ordering and magnetization

reversal in two-dimensional nanomagnet arrays Phys. Rev. Lett. 95 207202
[8] Popelier P L A and Kosov D S 2001 Atom-atom partitioning of intramolecular and intermolecular Coulomb

energy J. Chem. Phys. 114 6539
[9] Ammari H and Kang H 2007 Polarization and Moment Tensors (New York: Springer)

[10] Buehler R J and Hirschfelder J O 1951 Bipolar expansion of Coulomb potentials Phys. Rev. 83 628
[11] Varsalovich D A, Moskalev A N and Khersonskii V K 1988 Quantum Theory of Angular Momentum (Singapore:

World Scientific)
[12] Jackson J D 1962 Classical Electrodynamics (New York: Wiley)
[13] Landau L D and Lifschitz E M 1997 Klassische Feldtheorie, vol 2 of Lehrbuch der Theoretischen Physik (Thun

und Frankfurth am Main: Verlag Harri Deutsch)
[14] Chang H 1961 Fields external to open-structure devices represented by ellipsoid or spheroid Br. J. Appl. Phys.

12 160
[15] Stenger J, Inouye S, Stamper-Kurn D M, Miesner H-J, Chikkatur A P and Ketterle W 1998 Spin domains in

ground-state Bose–Einstein condensates Nature 396 345
[16] Mendoza-Reséndez R, Bomati-Miguel O, Bonville P and Serna C J 2004 Microstructural characterization of

ellipsoidal iron metal nanoparticles Nanotechnology 15 S254
[17] Delaunay J-J, Tomita M and Hayashi T 2000 Elongated prolate ellipsoid CoPt nanocrystals embedded in

graphite-like C magnetic thin films J. Magn. Magn. Mater. 219 325
[18] Lu X, Ge S and Wang X 2005 Chain of ellipsoids approach to the magnetic nanowire J. Appl. Phys. 97 84304
[19] Abramowitz M and Stegun I M 1965 Handbook of Mathematical Functions (New York: Dover)
[20] Stoner E C 1945 The demagnetizing factors for ellipsoids Phil. Mag. 36 803
[21] Osborn J A 1945 Demagnetizing factors of the general ellipsoid Phys. Rev. 67 351
[22] Beleggia M, De Graef M and Millev Y 2006 Demagnetization factors of the general ellipsoid: an alternative to

the Maxwell approach Phil. Mag. 86 2451
[23] Mikuszeit N, Vedmedenko E Y, Wiesendanger R and Oepen H P 2005 Multipole moments of in-plane polarized

disks J. Appl. Phys. 97 10J502
[24] Hwang C 1995 A method for computing the coefficients in the product sum formula of associated Legendre

functions J. Geod. 70 110

http://dx.doi.org/10.1063/1.1704349
http://dx.doi.org/10.1086/175583
http://dx.doi.org/10.1103/PhysRevLett.95.207202
http://dx.doi.org/10.1063/1.1356013
http://dx.doi.org/10.1103/PhysRev.83.628
http://dx.doi.org/10.1088/0508-3443/12/4/308
http://dx.doi.org/10.1038/24567
http://dx.doi.org/10.1088/0957-4484/15/4/026
http://dx.doi.org/10.1016/S0304-8853(00)00318-8
http://dx.doi.org/10.1063/1.1882765
http://dx.doi.org/10.1103/PhysRev.67.351
http://dx.doi.org/10.1080/14786430600617161
http://dx.doi.org/10.1007/BF00863422

	1. Introduction
	2. Integrating the charge density of a half ellipsoid (one domain)
	2.1. The half shell of an ellipsoid
	2.2. The multipole moments of an ellipsoidal disc, the domain wall

	3. The multipole moments of the general ellipsoid
	4. Summary and discussion
	Acknowledgment
	Appendix A. Relations for trigonometric functions
	Appendix B. Coefficients of the associated Legendre functions
	Appendix C. The hypergeometric function
	Appendix D. Integration over volume charge
	References

